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Abstract
A geometrical approach for one-sided constraints is given. The Riemannian
metric is used in order to define convenient projectors which give the post-
impulses in terms of the pre-impulses. A formulation of Carnot’s theorem
within this geometric framework is exhibited.

PACS numbers: 0320, 0570, 3510

1. Introduction: the problem of impulsive non-holonomic constraints

In [8, 9] we have started a geometric study of mechanical systems subjected to impulsive
constraints, that is, those constraints which act instantaneously on the system, and produce
jumps of momenta. A typical example is a particle or a rigid body impacting against a
wall. The system could be submitted to additional non-holonomic constraints (imagine, for
instance, a collision of a rolling ball), and, moreover, after the collision, some new non-
holonomic constraints appearing there, could remain. This type of systems does not appear
to have received sufficient attention in the literature on geometric mechanics (see [12, 20] as
exceptions). However, they have been studied extensively in classical books [2, 16, 21], for
instance, and more recently see [5, 10, 15, 17, 18]. For more information about recent results
on rigid-body dynamics with impact see, for example [4, 19]. Not having a general enough
geometric framework within which to study them, makes it difficult to understand which part
of the ideas and techniques invented to describe such systems can be extended and used in
more general circumstances, such as those described at the end of this paper on time-dependent
impulsive non-holonomic constraints in mechanical systems.

0305-4470/01/081691+22$30.00 © 2001 IOP Publishing Ltd Printed in the UK 1691
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The problem of impulsive constraints in mechanical systems is a particular instance of
the more general problem of dynamical systems on manifolds having a boundary as well as
a family of submanifolds. For concreteness, let M be such a manifold, with boundary ∂M ,
N = N1 ∪· · ·∪Nr a family of submanifolds onM and let � be a vector field onM . Manifolds
with a boundary will model situations where the state space of the system will be limited
by external causes (a wall or a collision for particle systems, a cut-off in the momenta for
Hamiltonian systems, inequality constraints for control systems, etc). The submanifolds Nk
model situations where, either we want the system to remain on them, such as permanent
non-holonomic constraints in Lagrangian mechanics determined by the rolling condition, etc,
or constraints that the system could encounter during its evolution. Imagine, for instance a
sphere that is moving without friction on a plane and in a certain region, the plane is rough
and the sphere starts rolling without sliding. In this case the interpretation of the submanifolds
Nk will be that of impulsive non-holonomic constraints. The most hideous situations happen
along the intersections of the boundary with the submanifolds Nk . It could perfectly well
happen that a trajectory of the dynamical systems ends up on a point in subsets of the form,
N1 ∩ N2 ∩ ∂M . These situations are poorly understood and we will not dwell on them
here.

We can reproduce the above discussion first in Lagrangian dynamics. The practice and
experience with Lagrangian mechanics has produced a clear cut separation between holonomic
and non-holonomic constraints and impulsive and non-impulsive constraints. IfQ denotes the
configuration space of a Lagrangian system, the first ones correspond to fixing a submanifold
N ⊂ TQ of the form N = T P for some submanifold P ⊂ Q, whereas the non-holonomic
constraints will be determined by general submanifolds in TQ, for instance, linear non-
holonomic constraints are defined by a distribution D ⊂ TQ. On the other hand, impulsive
holonomic constraints are modelled by a boundary in the manifoldQ. This boundary ∂Q ⊂ Q,
induces a boundary on TQ which is the restriction T∂QQ of the bundle TQ to ∂Q. Impulsive
non-holonomic constraints will be correspondingly modelled by more general boundaries on
TQ (i.e. given submanifolds in TQ). Needless to say all of these notions can be (and in many
applications are in fact) time-dependent. Think, for instance, of a chart that is moving along a
ramp with a ball jumping on top of it. The difference between non-holonomic constraints as
submanifolds of TQ and impulsive non-holonomic constraints is that ordinary non-holonomic
constraints are assumed to be permanent, i.e. the integral curves of the system must always lie
on the submanifold N , whereas, the impulsive non-holonomic constraints act only when (and
possibly after) the system hits the submanifold N .

The general problem of modelling a dynamical system on a manifold M with boundary
∂M poses the problem of being more precise about the meaning of dynamics. Because the
initial-value problem for a vector field � on such space does not have solution in general,
we cannot simply associate evolution with such an object. Further information is needed.
Obviously the problem for defining evolution (even locally) occurs in ∂M ∪ N1 ∪ · · · ∪ Nr ,
because elsewhere in M the Cauchy problem always has a local solution. We shall assume
for the moment that the boundary ∂M is a smooth manifold of codimension one of M . The
restriction of the vector field to T∂MM is not in general tangent to ∂M . If this were the case there
will be no problem at all and the dynamics will be well defined by a flow on the manifoldM that
will restrict to the invariant submanifold ∂M . In contrast, hitting the boundary means that the
system is interacting with some ‘external world’ that we do not want, or we cannot, describe
in detail. However, we can model what the consequences of this interaction will be. Changes
in the state of the system are expected. It is plausible to assume that these changes are of an
instantaneous nature. An instantaneous change, like the one happening with an ideal collision
in a wall, will be modelled by a map �: ∂M → ∂M , that will tell us where in state space the
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system will emerge once it hits the boundary. If the system after hitting the boundary is going
to remain on the boundary it will be modelled by a one-parameter family of diffeomorphisms
on the boundary�t that will describe how the state on the boundary evolves as the time passes.
This situation will correspond, for instance, to when the system gets trapped in the boundary.
Such a situation will occur, for instance, in a completely inelastic collision along the normal
component to a wall. The geometrical model for such an example will consist of a vector field
�∂M on ∂M and the collision with the boundary will be described by projecting the vector field
�|∂M to �∂M . Note that if the system starts in a state on the boundary the dynamical evolution
is given directly by �∂M . The problem of non-holonomic constraints in Lagrangian dynamics
is exactly this. We shall think of the constraint submanifold N as the topological boundary of
the manifold TQ− N . Thus the dynamical system starting on a point in N is trapped by the
boundary. Specifying the dynamics consists in projecting the Euler–Lagrange vector field to
N .

We shall not address the general problem of dynamical systems on manifolds with
boundary and submanifolds here but, as in previous papers, we concentrate on mechanical
systems in the Lagrangian formalism. This approach will help us in comparing the scope of
geometrical methods with respect to classical treatments and to analyse particular examples
of interest. The mechanical systems considered here are described by a Lagrangian function
which is the kinetic energy of a Riemannian metric g on the configuration manifoldQ minus
the potential energyV . The metric provided by the kinetic energy allows us to define projectors
whenever necessary, thus providing an effective way of defining the equations of motion in
the boundaries (or after the impulses).

The presence of boundaries also changes the notion of conserved quantities. Thus, a
function F on a manifold with a boundary which is invariant with respect to a vector field
� is not necessarily a constant of the motion. In fact, if the dynamics along the boundary,
the above-mentioned � map, for instance, is such that �∗F 
= F , the function F will not
be constant along the trajectories of the system. In particular, in the Hamiltonian and/or
Lagrangian system, the energy of the system is not necessarily a constant of the motion. In
the Lagrangian formalism the kind of dynamics on the boundary which is assumed to occur
preserves the configuration manifold, i.e. if we have a manifold Q with boundary ∂Q, then
the map �: T∂QQ → T∂QQ must be such that τQ ◦ � = τQ, in other words, after hitting
the boundary, the position of the system will not change instantaneously. It is obvious that
continuous functions onQ such as the potential energy will remain invariant under such kinds
of transformations.

A completely elastic collision against the wall will be described by the map�(q, v‖+v⊥) =
(q, v‖ − v⊥), for all q ∈ ∂Q, v = v‖ + v⊥ in TqQ = Tq(∂Q) ⊕ Tq(∂Q)⊥. In this case, the
kinetic energy will also be preserved, and hence the total energy. However, in general this
does not have to be so. We will analyse the general situation for the change of the kinetic
energy under several impulsive constraints (or boundaries on TQ). In the simplest case of
holonomic boundaries this result is known as Carnot’s theorem (see, for instance, [15, 18]).
In this paper we will extend Carnot’s theorem to non-holonomic impulsive constraints,
and to the time-dependent holonomic and non-holonomic instantaneous constraints. Thus
we will show that Carnot’s theorem is a geometric consequence of the application of a
convenient orthogonal projection of velocities on the manifold, which is compatible with
the constraints.

It should be remarked that the approach in this paper differs from that in [8, 9], where we
worked on the phase space, while we are now working on the configuration manifold itself.
Indeed, the present approach permits the explanation of Carnot’s theorem according to classical
textbooks and, in addition, it simplifies the computations of the projectors.
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The paper is organized as follows. In section 2 we briefly recall the basic ingredients
of non-holonomic and impulsive constraints. Section 3 is devoted to studying the case of
time-independent holonomic one-sided constraints and to derive different versions of Carnot’s
theorem (theorems 3.2, 3.6, 3.9 and 3.11). The time-dependent case is discussed in section 4.
Several examples are given in the paper in order to illustrate the results.

2. Classical mechanical systems

2.1. Mechanical systems

Let Q be a differentiable manifold of dimension n, with local coordinates (qi). We consider
fibred coordinates (qi, q̇i) on the tangent bundle TQ such that the canonical projection
τQ : TQ −→ Q reads as τQ(qi, q̇i) = (qi).

A classical mechanical system is determined by a Lagrangian function

L(v) = 1
2g(v, v)− (V ◦ τQ)(v) v ∈ TQ (1)

where g is a Riemannian metric on Q, and V is a function on the configuration space Q (the
potential).

The Euler–Lagrange equations for this Lagrangian L,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 1 � i � n

take the form

q̈i + �ijkq̇
j q̇k = −gij ∂V

∂qj
(2)

where �ijk are the Christoffel symbols of the Levi-Civita connection ∇ determined by g. In
terms of the Levi-Civita connection we can rewrite equation (2) in a more compact and intrinsic
way. Indeed, a curve c : I −→ Q of class C2, c(t) = (q1(t), . . . , qn(t)), is a solution for the
Lagrangian system if and only if

∇ċ(t)ċ(t) = −grad V (c(t))

where the gradient is considered with respect to g (see [1]).

2.2. Non-holonomic mechanical systems

Suppose in addition that the system is subjected to non-holonomic constraintsφa : TQ −→ R,
1 � a � m, that define a submanifold N = {v ∈ TQ|φa(v) = 0, a = 1, . . . , m} of TQ. In
this case, not all the velocities are admissible but only those compatible with the constraints.

The non-holonomic constraints usually found in mechanics are linear in the velocities,
that is, they are of the form

φa(q, q̇) = µai (q)q̇i 1 � a � m.
As is well known the equations of motion for the non-holonomic problem can be derived from
d’Alembert’s principle:[

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

]
δqi = 0 (3)

where δqi denotes the virtual displacements, verifying

µai δq
i = 0. (4)
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(We will assume that the system is not subjected to non-conservative forces.) In terms of
Lagrange multipliers we deduce that

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= λaµai .

From a more geometrical point of view the linear constraints are determined by prescribing
a distribution D on Q of dimension n − m such that the annihilator of D is locally given
by

Do = 〈µa = µai dqi; 1 � a � m〉
with µa a family of independent 1-forms on Q. In this manner, the solutions of the non-
holonomic Lagrangian system satisfy

∇ċ(t)ċ(t) = − grad V (c(t)) + λ(ċ(t)) ċ(t) ∈ Dc(t) (5)

where λ is a section of D⊥ along c and, D⊥ denotes the orthogonal complement of D with
respect to the metric g.

Since g is a Riemannian metric, the m×m matrix (Cab) = (µai g
ijµbj ) is symmetric and

regular. Therefore, we can obtain the Lagrange multipliers as

λ(qi(t), q̇i(t)) = Cab
((

−�ijkq̇j q̇k − gij ∂V
∂qj

)
µai + q̇ i q̇j

∂µai

∂qj

)
Zb

where (Cab) is the inverse matrix of (Cab) and, the vector field Za is defined by

g(Za, Y ) = µa(Y ) for any vector field Y 1 � a � m
that is,Za is the gradient of the 1-formµa . Thus, D⊥ = 〈Za〉, 1 � a � m. In local coordinates,
we have

Za = gijµai
∂

∂qj
.

By using the metric g and the distribution D we can obtain two complementary orthogonal
projectors

P : TQ→ D
Q : TQ→ D⊥

with respect to g.
A direct computation shows that the projector Q is given by

Q = CabZa ⊗ µb.
Using these projectors we have that the equations of motion are the following. A curve

c(t) is a motion for the non-holonomic system if it satisfies the constraints, say, φa(ċ(t)) = 0,
for all a, and, in addition, the ‘projected equation of motion’

P(∇ċ(t) ċ(t)) = −P(grad V (c(t)))

is fulfilled. But these conditions are equivalent to

ċ(t) ∈ Dc(t) ∇̄ċ(t)ċ(t) = −P(grad V (c(t)))

where ∇̄ is the modified linear connection defined by

∇̄XY = ∇XY + (∇XQ)(Y )
for all vector fields X and Y onQ (see [7, 13] for more details).
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Remark 2.1. Another possible approach to the Lagrangian formulation of the dynamics of
systems with non-holonomic constraints is Hamel’s method of quasi-coordinates (or pseudo-
coordinates). It was revisited by Koiller [11] (see also [3]) in terms of principal bundles (see
also [14]), and this analysis gave a new impulse to the study of non-holonomic systems. A
recent collection of papers on the subject is [6].

2.3. Impulsive constraints

Consider a Lagrangian system subjected to m permanent non-holonomic constraints φa =
µai q̇

i , 1 � a � m. Suppose that at time t0 new constraints *A = νAi (q)q̇
i , 0 � A � l are

instantaneously imposed on the system. (Without loss of generality, in the following, we will
assume that these new constraints and the permanent ones are independent.) Therefore, the
virtual displacements must verify (4) and in addition the equations

νAi δq
i = 0.

Now, if c(t) = (q1(t), q2(t), . . . , qn(t)) is a trajectory of the system (subjected to
permanent constraints φa and impulsive constraints*A at time t0), then for all intervals [t1, t2]
in its domain, we must have∫ t2

t1

[
∂L

∂qi
δqi(t) +

∂L

∂q̇i
δq̇i(t)

]
= 0

where δqi(t) is any variation with fixed points at t1 and t2 and, moreover, µai δq
i(t) = 0,

1 � a � m, and νAi δq
i(t0) = 0, 0 � A � l.

In particular, with t1 = t0 − ε and t2 = t0 + ε, it follows that

pi(t0 + ε)δqi(t0 + ε)− pi(t0 − ε)δqi(t0 − ε) =
∫ t0+ε

t0−ε

d

dt

(
∂L

∂q̇i
δqi
)

dt

=
∫ t0+ε

t0−ε

[
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi

]
δqi dt.

The last term is zero using d’Alembert’s principle for any admissible variations. Now, taking
limits as ε tends to zero, we have that

�piδq
i = (pi(t+0 )− pi(t−0 ))δqi(t0) = 0

or, by using Lagrange multipliers,

�pi = λ̄aµai + µ̄Aν
A
i .

But pi = gij q̇j , so that we have

�q̇i = q̇ i (t+0 )− q̇ i (t−0 ) = λ̄agijµaj + µ̄Ag
ij νAj (6)

where q̇i (t+0 ) and q̇ i (t−0 ) are the velocities before and after the impulse, respectively (see
[15, 18]).

Remark 2.2. The authors wish to thank an anonymous referee for pointing out to us the
justification of equation (6).

In the next sections we will apply the above formalism to several particular cases.



Geometric formulation of Carnot’s theorem 1697

3. Time-independent holonomic or non-holonomic instantaneous constraints

3.1. Mechanical systems subjected to a holonomic one-sided constraint. Carnot’s theorem

Consider a Lagrangian system subjected to m permanent non-holonomic linear constraints
φa = µai (q)q̇

i and in addition to a holonomic one-sided constraint *(q) � 0 (this would be
the case of collision with a fixed wall, for instance). The inequality *(q) � 0 determines a
closed subset ofQ whose boundary N is a (n− 1)-dimensional submanifold ofQ (see [9]).

From (5) and (6), the equations of motion of the non-holonomic system subjected to this
impulsive constraint are the following:

∇ċ(t)ċ(t) = − grad V (c(t)) + λ(ċ(t)) and ċ(t) ∈ D(c(t)) if *(c(t)) > 0

�ċ(t) = ċ(t+)− ċ(t−) ∈ D⊥(c(t)) + T ⊥
c(t)N if *(c(t)) = 0.

Therefore, if c(t) = (qi(t)) we have

q̇ i (t+)− q̇ i (t−) = λ̄agijµaj + µ̄gij
∂*

∂qj
.

Since ċ(t+) and ċ(t−) ∈ D(c(t)) we deduce that

�ċ(t) ∈ P(T ⊥
c(t)N)

or, equivalently,

�ċ(t) = (
µ̄ grad* − µ̄Cab

[
µa(grad*)

]
Zb
)
|c(t) .

From this last equation we observe that, in order to know the post-velocities (after the impulse)
from the pre-velocities (before the impulse), it is only necessary to determine the remaining
Lagrange multiplier µ̄.

We are assuming that during the impact the unique impulsive force acting is due to the
restitution of the wall determined by *(q) � 0. Suppose that the restitution coefficient is
α ∈ [0, 1].

The submanifold N and the projector P determine two new complementary orthogonal
projectors along the points of N :

Q̃ : TQ → P(T ⊥N)

P̃ : TQ → (P(T ⊥N))⊥

defined locally by

Q̃ = C−1 P(grad*)⊗ β (7)

where β(X) = g(P(grad*),X), for all X, C = g(P(grad*),P(grad*)) and P̃ = id − Q̃.
Note that C 
= 0 since we are assuming that the 1-forms µa and d* are independent along N .

We assume that the normal components of the velocities before and after the impact are
related by the formula

ċ(t+)⊥ = −α ċ(t−)⊥ (8)

where α is the restitution coefficient of the wall. In other words, we have

d*(ċ(t+)) = −α d* (ċ(t−)). (9)

A direct computation, using (7) and the fact that ċ(t−) and ċ(t+) belong to D(c(t)), proves that
(9) is equivalent to

Q̃(ċ(t+)) = −αQ̃(ċ(t−)).



1698 A Ibort et al

Thus, since P̃(ċ(t+)) = P̃(ċ(t−)) we obtain that

ċ(t+) = (P̃ − αQ̃)(ċ(t−)). (10)

The following lemma will be useful in the proof of Carnot’s theorem.

Lemma 3.1. Let V be a real vector space endowed with an inner product 〈 , 〉. Suppose that A
and B are orthogonal linear endomorphisms of V , that is, 〈A(u),B(v)〉 = 0, for all u, v ∈ V ,
and that (A + B)(v) = v, for any v ∈ Im A ⊕ Im B. Consider the endomorphism A − αB,
where α ∈ [0, 1]. We have

〈(A − αB)(v), (A − αB)(v)〉 − 〈v, v〉 = −1 − α
1 + α

〈A(v)− αB(v)− v,A(v)− αB(v)− v〉

for any v ∈ Im A ⊕ Im B.

Proof. Since v ∈ Im A ⊕ Im B, we have that

〈(A − αB)(v), (A − αB)(v)〉 − 〈v, v〉 = 〈(A − αB)(v), (A − αB)(v)〉
−〈A(v) + B(v),A(v) + B(v)〉

= (α2 − 1)〈B(v), v〉.
Moreover,

〈A(v)− αB(v)− v,A(v)− αB(v)− v〉 = (1 + α)2〈B(v), v〉.
The result now follows from both equalities. �

Theorem 3.2 (Standard Carnot’s theorem [15]). If T1 is the kinetic energy after the impulse,
T0 the kinetic energy before the impulse and Tl the kinetic energy of the loss in velocity, then
we have

T1 − T0 = −1 − α
1 + α

Tl

where α is the restitution coefficient of the wall.

Proof. Carnot’s theorem follows from (10) and lemma 3.1. Indeed, observe that

T1 = 1
2g(ċ(t

+), ċ(t+))

T0 = 1
2g(ċ(t

−), ċ(t−))

Tl = 1
2g(ċ(t

+)− ċ(t−), ċ(t+)− ċ(t−)). �

Remark 3.3. Note that, in order to obtain theorem 3.2, we have applied lemma 3.1 in a
particular case, when the two orthogonal endomorphisms fill up the whole tangent bundle.
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3.2. Mechanical systems subjected to instantaneous non-holonomic constraints

In this situation, we will assume that, apart of the holonomic one-sided constraint *(q) � 0,
non-holonomic linear constraints on the velocities are imposed instantaneously. Suppose that
these new constraints are given by

ψA(qi, q̇i) = νAi (q)q̇i 1 � A � l.

At any point q such that *(q) = 0, we consider the vector space F(q) annihilated by

〈(νA = νAi dqi)|q〉 1 � A � l.

In this case, the equations of motion of the mechanical system are:

∇ċ(t)ċ(t) = − grad V (c(t)) + λ(ċ(t)) and ċ(t) ∈ D(c(t)) if *(c(t)) > 0

�ċ(t) = ċ(t+)− ċ(t−) ∈ D⊥(c(t)) + T ⊥
c(t)N + F⊥(c(t)) if *(c(t)) = 0.

Thus, if c(t) = (qi(t)) we have

q̇ i (t+)− q̇ i (t−) = λ̄agijµaj + µ̄gij
∂*

∂qj
+ µ̄Ag

ij νAj .

Using the same technique as above, we obtain that

�ċ(t) ∈ P(T ⊥
c(t)N + F⊥(c(t)))

or, equivalently,

�ċ(t) = (
µ̄ grad* − µ̄Cabµa(grad*)Zb + µ̄AY

A − µ̄ACabµa(YA)Zb
)
|c(t)

where YA, 1 � A � l are the vector fields along N defined by g(YA,X) = νA(X), for any X.
In order to determine the Lagrange multipliers µ̄ and µ̄A it is necessary to use additional

physical conditions. In our case, we will suppose that the restitution coefficient of the wall is
α ∈ [0, 1], and that the instantaneous non-holonomic constraints remain after the impulse.

Define the following complementary projectors along the points of N :

Q : TQ −→ P(T ⊥N + F⊥)

P : TQ −→ (P(T ⊥N + F⊥))⊥.

Since the impulsive and permanent constraints are independent, we deduce that the 1-forms
{µA, d*, νB} are independent along the points of N . Thus, if Y 0 = grad* then the matrix(
(CAB = g(P(YA),P(YB))))0�A�B�l is regular. Now, a direct computation shows that

Q =
∑

0�A,B�l
CAB P(YA)⊗ βB

where βB(X) = g(P(YB),X), for all X, and CAB denotes the entries of the inverse matrix of
the matrix (CAB).
Proposition 3.4. Assuming the above conditions, we obtain that

ċ(t+) = (P − αT̃ ) (ċ(t−)) (11)

where

T̃ =
∑

0�A�l
CA0 P(YA)⊗ β0.
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Proof. From the construction of the projectors P and Q we have

P(ċ(t+)) = P(ċ(t−))

and, consequently, we deduce that

ċ(t+) = P(ċ(t−)) + Q(ċ(t+))

= P(ċ(t−)) +

[ ∑
0�A,B�l

CAB P(YA)⊗ βB
]
(ċ(t+))

= P(ċ(t−)) +
∑

0�A,B�l
CAB

[
βB(ċ(t+))

]P(YA).
Since the non-holonomic instantaneous constraints are preserved after the impact we have

νA(ċ(t+)) = 0 1 � A � l.

In addition, βA − νA ∈ Do, 1 � A � l, since (βA − νA)(X) = g(P(YA),X) − νA(X) =
g(YA,X)− νA(X) = 0 if X ∈ D. Therefore, we obtain

βA(ċ(t+)) = 0 1 � A � l.

We are assuming that the normal components of the velocities before and after the impulse are
related by (8), which is in turn equivalent to

Q̃(ċ(t+)) = −αQ̃(ċ(t−))

and hence

β0(ċ(t+)) = −αβ0(ċ(t−)).

(Note that β0 is the 1-form corresponding to P(Y 0), according to the definition of the βAs.)
Finally, we have

ċ(t+) = P(ċ(t−))− α
∑

0�A�l
CA0

[
β0(ċ(t−))

]P(YA). �

Lemma 3.5. P and T̃ are orthogonal and (T̃ + P)(X) = X, for all X ∈ Im P ⊕ Im T̃ .

Proof. The proof is straightforward from the local expressions of both projectors. �

Theorem 3.6 (Carnot’s theorem). If T1 is the kinetic energy after the impulse, T0 the kinetic
energy before the impulse and Tl the kinetic energy of the loss in velocity, and if the initial
velocity verifies ċ(t−) ∈ Im P ⊕ imT̃ , we have

T1 − T0 = −1 − α
1 + α

Tl

where α is the restitution coefficient of the wall.

Proof. The result follows from proposition 3.4 and lemmas 3.1 and 3.5. �
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Example 3.7. While moving in a vertical plane xOy a circular disc of radius R and mass m
hits a rough wall determined by the axis 0x. Assuming that the motion is planar, the system
possesses three degrees of freedom: the coordinates x and y of the centre of the disc and θ the
angle between a point P of the disc and the axis 0y.

The system is described by the Lagrangian function

L = m

2

(
ẋ2 + ẏ2 + k2θ̇2

)
wheremk2 denotes the moment of inertia of the disc. There are no permanent non-holonomic
constraints but, in addition, apart of the holonomic one-sided constraint * = y − R we have
an impulsive constraint along the line y = R:

ψ1 = ẋ − Rθ̇.
Following the notation introduced above, we have

Y 0 = 1

m

∂

∂y
Y 1 = 1

m

∂

∂x
− R

mk2

∂

∂θ

and ( C00 C01

C10 C11

)
=

 1/m 0

0
k2 + R2

mk2


.

Therefore, we obtain that

Q =
(

1

m

∂

∂y
,

1

m

∂

∂x
− R

mk2

∂

∂θ

) m 0

0
mk2

R2 + k2


( dy

dx − R dθ

)

T̃ = ∂

∂y
⊗ dy.

Consequently, we deduce that

(ċx(t
+), ċy(t

+), ċθ (t
+)) = (

P − αT̃ )(ċx(t−), ċy(t−), ċθ (t−))
and

ċx(t
+) = R2ċx(t

−) + Rk2ċθ (t
−)

R2 + k2

ċy(t
+) = −αċy(t−)

ċθ (t
+) = Rċx(t

−) + k2ċθ (t
−)

R2 + k2

where we have used the obvious notation for the velocity components. For pre-impact velocities
we have

ċ(t−) ∈ Im P ⊕ Im T̃ =
〈
R
∂

∂x
+
∂

∂θ
,
∂

∂y

〉

and then

T (ċ(t+))− T (ċ(t−)) = −1 − α
1 + α

T (ċ(t+)− ċ(t−)).
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Note that theorem 3.6 only holds for initial velocities in the Whitney sum of the images
of the projectors P and T̃ . For an extension to arbitrary initial velocities we will need a
generalization of lemma 3.1.

Lemma 3.8. Let V be a real vector space endowed with an inner product 〈 , 〉. Assume that
A and B are orthogonal endomorphisms of V , that is, 〈A(u),B(v)〉 = 0, for all u, v ∈ V .
Consider the linear endomorphism A − αB, where α ∈ [0, 1]. Suppose that C = id − A − B
is orthogonal to A, then

〈(A − αB)(v), (A − αB)(v)〉 − 〈v, v〉 = −1 − α
1 + α

〈A(v)− αB(v)− v,A(v)− αB(v)− v〉

− 2α

1 + α
〈C(v),C(v)〉 − 2α〈C(v),B(v)〉

for all v ∈ V .

Proof. For any v ∈ V we can put v = Av + Bv + Cv. Then

〈(A − αB)(v), (A − αB)(v)〉 − 〈v, v〉 = 〈A(v),A(v)〉 + α2〈B(v),B(v)〉
−〈A(v) + B(v) + C(v),A(v) + B(v) + C(v)〉

= (α2 − 1)〈B(v),B(v)〉 − 〈C(v),C(v)〉 − 2〈B(v),C(v)〉.
Moreover,

〈A(v)− αB(v)− v,A(v)− αB(v)− v〉
= (1 + α)2〈B(v),B(v)〉 + 2(α + 1)〈B(v), C(v)〉 + 〈C(v), C(v)〉

and the result follows. �

Theorem 3.9 (Extended Carnot’s theorem). If T1 is the kinetic energy after the impulse, T0

the kinetic energy before the impulse, Tl the kinetic energy of the loss in velocity and TC is the
kinetic energy of the velocity C(ċ(t−)) = ċ(t−)− P(ċ(t−))− T̃ (ċ(t−)), then

T1 − T0 = −1 − α
1 + α

Tl − 2α

α + 1
TC − αg(T̃ (ċ(t−)),C(ċ(t−)))

where α is the restitution coefficient of the wall.

Proof. It follows from lemma 3.8 and proposition 3.4. �

Note that, in general, T̃ and C = id − P − T̃ are not orthogonal. Next, we will discuss
the case when both projectors are orthogonal.

Lemma 3.10. The following statements are equivalent:

(a) T̃ and C are orthogonal;

(b) T̃ = Q̃;

(c) P(Y 0) ∈ F .
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Proof.

(a)⇔ (b)

Since P and T̃ are orthogonal, then T̃ and C are orthogonal iff

g(T̃ (u), v) = g(T̃ (u), T̃ (v))
for all u, v ∈ TNQ. This last condition is equivalent to∑

1�A�l
CA0P(YA) = 0

which implies CA0 = 0, 1 � A � l.
Now, using that (CAB)0�A,B�l is symmetric we deduce that CA0 = 0, 1 � A � l and that

C00 = 1

g(P(grad*),P(grad*))
.

Thus, T̃ = Q̃.
Conversely, if T̃ = Q̃ then∑

1�A�l
CA0P(YA) = 0

and therefore T̃ and C are orthogonal.

(a)⇔ (c)

Since

CA0 = g(P(YA),P(Y 0)) = g(YA,P(Y 0)) = νA(P(Y 0))

for 1 � A � l, we conclude that T̃ and C are orthogonal if and only if P(Y 0) ∈ F . �

Theorem 3.11. If P(Y 0) ∈ F then

ċ(t+) = (P − αQ̃)(ċ(t−))
and

T1 − T0 = −1 − α
1 + α

Tl − 2α

α + 1
TC

where α is the restitution coefficient of the wall.

Proof. It follows from theorem 3.9 and lemma 3.10. �

Example 3.12. Following example 3.7, suppose now that ċ(t−) /∈ Im P⊕Im T̃ . This condition
is equivalent to ċx(t−) 
= Rċθ (t

−). Observe that in this case T̃ = Q̃. The projection of the
initial velocity by C = Q − Q̃ gives(

k2

k2 + R2
(ċx(t

−)− Rċθ (t−)), 0,− R

k2 + R2
(ċx(t

−)− Rċθ (t−))
)

and then

TC = mk2

2(k2 + R2)
(ċx(t

−)− Rċθ (t−))2.
From theorem 3.11, we have that

T1 − T0 = −1 − α
1 + α

Tl − 2α

α + 1
TC .
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Example 3.13. A sphere of radius r and mass 1 rolls without sliding on a horizontal plane.
At the instant t0, the sphere hits a rough wall determined by the plane x = 0 (see [15]).

The kinetic energy of the sphere is

T = 1
2

(
ẋ2 + ẏ2 + ż2 + k2(ω2

x + ω2
y + ω2

z )
)

where ωx , ωy and ωz are the angular velocities given by

ωx = θ̇ cosψ + ϕ̇ sin θ sinψ

ωy = θ̇ sinψ − ϕ̇ sin θ cosψ

ωz = ϕ̇ cos θ + ψ̇

and ϕ, θ and ψ are the Eulerian angles.
Since the point of contact of the sphere and the plane has zero velocity, we have the

following permanent constraints:

φ1 = ẋ − rωy = 0

φ2 = ẏ + rωx = 0

φ3 = ż = 0.

When the sphere hits the wall, apart of the holonomic one-sided constraint * = x, the
following constraints are instantaneously imposed:

ψ1 = ẏ − rωz = 0

ψ2 = ωy = 0.
(12)

We consider only ψ0 = *̇ = ẋ and ψ1 since ψ2 is a linear combination of φ1 and ψ0.
Following the classical procedure, we introduce quasi-coordinates ‘q1’, ‘q2’ and ‘q3’ such

that ‘q̇1’ = ωx , ‘q̇2’ = ωy and ‘q̇3’ = ωz (see [11, 14]). These last expressions only have a
symbolic meaning where we interpret ‘dqi’ and ‘ ∂

∂qi
’, 1 � i � 3, as adequate combinations

of the differentials and partial derivatives, respectively, of the Eulerian angles. Note that{
∂
∂x
, ∂
∂y
, ∂
∂z

, ‘ ∂
∂q1

’, ‘ ∂
∂q2

’, ‘ ∂
∂q3

’
}

and {dx, dy, dz, ‘dq1’, ‘dq2’, ‘dq3’} are dual bases.
The projector Q, obtained from the permanent constraints, is given by

Q =
(
∂

∂x
− r

k2

∂

∂q2
,
∂

∂y
+
r

k2

∂

∂q1
,
∂

∂z

)



k2

k2 + r2
0 0

0
k2

k2 + r2
0

0 0 1







dx − r dq2

dy + r dq1

dz


.

From the constraints ψ0 and ψ1, which are instantaneously imposed on the system, we obtain
the 1-forms:

ν0 = dx

ν1 = dy − r dq3

and the associated vector fields from the metric g are:

Y 0 = ∂

∂x

Y 1 = ∂

∂y
− r

k2

∂

∂q3
.
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Therefore, we have

P(Y 0) = r2

k2 + r2

∂

∂x
+

r

k2 + r2

∂

∂q2

P(Y 1) = r2

k2 + r2

∂

∂y
− r

k2 + r2

∂

∂q1
− r

k2

∂

∂q3
.

Observe that P(Y 0) ∈ F , that is, ν1(P(Y 0)) = 0.
Thus, the relations between the pre-impact and post-impact linear and angular velocities

are obtained from the equations:

�ẋ = r2

k2 + r2
µ̄0

�ẏ = r2

k2 + r2
µ̄1

�ż = 0

�ωx = − r

k2 + r2
µ̄1

�ωy = r

k2 + r2
µ̄0

�ωz = − r

k2
µ̄1

where µ̄0 and µ̄1 are undetermined Lagrange multipliers.
In order to determine the Lagrange multipliers µ̄0 and µ̄1 it is necessary to require

additional information about the system. Indeed, assume that the restitution coefficient
of the wall is α and that the instantaneous non-holonomic constraints remain after the
impulse. Under these conditions, if ċ(t0) = (ẋ0, ẏ0, ż0, (ωx)0, (ωy)0, (ωz)0) and ċ(t1) =
(ẋ1, ẏ1, ż1, (ωx)1, (ωy)1, (ωz)1) are the linear and angular velocities before and after the impact,
respectively, then using that φi(ċ(t0)) = φi(ċ(t1)) = 0, we deduce that

ẋ1 = −αẋ0

ẏ1 − r(ωz)1 = 0.

The 1-forms β0 and β1 related to P(Y0) and P(Y1), respectively, by the musical
isomorphism induced by the metric g are:

β0 = r2

k2 + r2
dx +

rk2

k2 + r2
dq2

β1 = r2

k2 + r2
dy − rk2

k2 + r2
dq1 − r dq3.

Therefore, the projector Q is given by

Q = A



k2 + r2

r2
0

0
k2(k2 + r2)

r2(2k2 + r2)






r2

k2 + r2
dx +

rk2

k2 + r2
dq2

r2

k2 + r2
dy − rk2

k2 + r2
dq1 − r dq3




where

A =
(

r2

k2 + r2

∂

∂x
+

r

k2 + r2

∂

∂q2
,

r2

k2 + r2

∂

∂y
− r

k2 + r2

∂

∂q1
− r

k2

∂

∂q3

)
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and the projector T̃ = Q̃ is

T̃ = 1

k2 + r2

(
r
∂

∂x
+
∂

∂q2

)
⊗ (r dx + k2 dq2).

Consider now a pre-impact velocity which verifies the permanent non-holonomic constraints,
that is,

(ẋ0, ẏ0, 0,−ẏ0/r, ẋ0/r, (ωz)0).

Then, if we project this velocity by P − αT̃ we obtain the post-impact velocities:

ẋ1 = −αẋ0

ẏ1 = (k2 + r2)ẏ0 + rk2(ωz)0

2k2 + r2

ż1 = 0

(ωx)1 = − (k
2 + r2)ẏ0 + rk2(ωz)0

r(2k2 + r2)

(ωy)1 = −α ẋ0

r

(ωz)1 = (k2 + r2)ẏ0 + rk2(ωz)0

r(2k2 + r2)
.

Observe that

Im P =
〈
k2 ∂

∂x
− r ∂

∂q2
,
∂

∂z
, k2 ∂

∂y
+ r

∂

∂q1
, (k2 + r2)

∂

∂y
+ r

∂

∂q3

〉

Im T̃ =
〈
r
∂

∂x
+
∂

∂q2

〉
and then (

Im P ⊕ Im T̃ ) ∩ Im P =
〈
r
∂

∂x
+
∂

∂q2
, r2 ∂

∂y
− r ∂

∂q1
+ r

∂

∂q3

〉
.

It is easy to prove that a pre-impact velocity belongs to
(

Im P ⊕ Im T̃ ) ∩ Im P if and only if
ẏ0 = r(ωz)0. Then, the relation between the kinetic energies would be

T1 − T0 = −1 − α
1 + α

Tl. (13)

In the case ẏ0 
= r(ωz)0, we need to add an extra term to equation (13). For that, we first
find the projection by C = id − P − T̃ = Q − T̃ of the pre-impact velocities. We denote this
projection by (ẋC, ẏC, żC, (ωx)C, (ωy)C, (ωz)C) which is equal to(

0,
k2

2k2 + r2
(ẏ0 − r(ωz)0), 0,− k2

r(2k2 + r2)
(ẏ0 − r(ωz)0), 0,− k2 + r2

r(2k2 + r2)
(ẏ0 − r(ωz)0)

)
.

Next, we compute the kinetic energy TC for this velocity:

TC = k2(k2 + r2)

2r2(2k2 + r2)
(ẏ0 − r(ωz)0)2

and then from theorem 3.11

T1 − T0 = −1 − α
1 + α

Tl − 2α

α + 1
TC .

Observe that for an elastic collision (α = 1) we have

T1 − T0 = −TC = − k2(k2 + r2)

2r2(2k2 + r2)
(ẏ0 − r(ωz)0)2.
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4. Time-dependent holonomic and non-holonomic instantaneous one-sided constraints

4.1. Mechanical systems subjected to a time-dependent holonomic one-sided constraint.
Carnot’s theorem

Assume that we have a time-dependent holonomic one-sided constraint defined by*(t, q) � 0.
The constraint* determines an (n−1)-dimensional unparametrized submanifoldNt ofQ for
any fixed time t . In fact, Nt = {q ∈ Q / *t(q) = *(t, q) = 0}.

The equations of motion of the non-holonomic system subjected to this time-dependent
impulsive constraint are

∇ċ(t)ċ(t) = − grad V (c(t)) + λ(ċ(t)) and ċ(t) ∈ D(c(t)) if *(t, c(t)) > 0

�ċ(t) = ċ(t+)− ċ(t−) ∈ D⊥(c(t)) + T ⊥
c(t)Nt if *(t, c(t)) = 0.

As in subsection 3.1 we have that

�ċ(t) ∈ P(T ⊥
c(t)Nt )

or, equivalently,

�ċ(t) = (
µ̄ grad*t − µ̄Cabµa(grad*t)Z

b
)
|c(t) .

From this last equation we observe that, in order to know the post-velocities (after the impulse)
from the pre-velocities (before the impulse), it is only necessary to determine the remaining
Lagrange multiplier µ̄.

We also assume that during the impact the unique impulsive force acting is due to the
restitution of the wall determined by *(t, q) � 0.

By applying the techniques of the time-independent case, we construct the following
time-dependent projectors along the points of Nt :

Q̃t : TQ −→ P(T ⊥Nt)

P̃t : TQ −→ (P(T ⊥Nt))⊥

for all t ∈ R. Therefore, we have P̃t (ċ(t+)) = P̃t (ċ(t−)).
Let α be the restitution coefficient of the wall. The assumption now is that

ċ(t+)⊥ − V ⊥
(t,c(t)) = −α(ċ(t−)⊥ − V ⊥

(t,c(t))) (14)

where V(t,c(t)) is the instantaneous velocity of the wall. That is,

d*t (ċ(t
+))− d*t (V(t,c(t))) = −α(d*t (ċ(t−))− d*t (V(t,c(t)))). (15)

If Ct = g(P(grad*t),P(grad*t)), W(t,c(t)) = C−1
t [d*t (V(t,c(t)))]P(grad*t)(c(t)) and β0

t is
the 1-form given by β0

t (X) = g(P(grad*t),X), for all X, then we can rewrite equation (15)
as

β0
t (ċ(t

+)) = −α β0
t (ċ(t

−)) + (1 + α) β0
t (W(t,c(t))) (16)

or, equivalently,

Q̃t

(
ċ(t+)

)− Q̃t

(
W(t,c(t))

) = −α(Q̃t

(
ċ(t−)

)− Q̃t

(
W(t,c(t))

))
.

Note that if V(t,c(t)) ∈ Dc(t) then

β0
t (V(t,c(t))) = β0

t (W(t,c(t)))

and, in this case, we could use V(t,c(t)) instead ofW(t,c(t)) in all the computations.
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From the above equations, we have

ċ(t+) = (P̃t − αQ̃t )ċ(t
−) + (1 + α)Q̃t (W(t,c(t))). (17)

Observe that if we consider the velocity of ‘approach’ ċW (t−) = ċ(t−)−W(t,c(t)), and the
velocity of ‘separation’ ċW (t+) = ċ(t+)−W(t,c(t)) then equation (17) can be rewritten as

ċW (t
+) = (P̃t − αQ̃t )(ċW (t

−)). (18)

Theorem 4.1 (Carnot’s theorem). Let

T ′
1 = 1

2g(ċ(t
+)−W(t,c(t)), ċ(t+)−W(t,c(t)))

be the kinetic energy of the velocity of ‘separation’,

T ′
0 = 1

2g(ċ(t
−)−W(t,c(t)), ċ(t−)−W(t,c(t)))

be the kinetic energy of the velocity of ‘approach’, and

Tl = 1
2g(ċ(t

+)− ċ(t−), ċ(t+)− ċ(t−))
be the kinetic energy due to the ‘loss of velocity’. Then, we have

T ′
1 − T ′

0 = −1 − α
1 + α

Tl.

Proof. It follows from lemma 3.1 and equation (18). �

4.2. Mechanical systems subjected to a time-dependent holonomic one-sided constraint and
non-holonomic instantaneous constraints. Carnot’s theorem

As in subsection 3.2 we will assume that non-holonomic linear constraints on the velocities
are imposed instantaneously, and that the wall is determined by a time-dependent holonomic
constraint *(t, q) � 0. If the non-holonomic constraints are given by

ψA(t, q, q̇) = νAi (t, q)q̇i 1 � A � l

we can consider for any (t, q) such that *(t, q) = 0 the vector space (Ft )(q) annihilated by

〈(νAt = (νAi )t dqi)|q〉 1 � A � l.

The equations of motion for this mechanical system are:

∇ċ(t)ċ(t) = − grad V (c(t)) + λ(ċ(t)) and ċ(t) ∈ D(c(t)) if *(t, c(t)) > 0

�ċ(t) = ċ(t+)− ċ(t−) ∈ D⊥(c(t)) + T ⊥
c(t)Nt + F⊥

t (c(t)) if *(t, c(t)) = 0.

We have again that

�ċ(t) ∈ P(T ⊥
c(t)Nt + F⊥

t (c(t))).

In order to determine completely the velocities after the impulse from the velocities before
the impulse it is necessary to assume additional conditions, for instance, we will suppose that
the restitution coefficient of the wall is α ∈ [0, 1] and that the velocity after the impact is
annihilated by the non-holonomic instantaneous constraints.

Define the following time-dependent complementary orthogonal projectors:

Qt : TQ −→ P(T ⊥Nt + F⊥
t )

Pt : TQ −→ (P(T ⊥Nt + F⊥
t ))

⊥
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along the points of Nt . For each t ∈ R, denote by YAt , 0 � A � l, the vector fields along the
points of Nt defined by

g(X, Y 0
t ) = X(*t) g(X, YAt ) = νAt (X)

for all X and 1 � A � l. Then, the projector Qt is given by

Qt =
∑

0�A,B�l
(CAB)t P(YAt )⊗ βBt

where βBt (X) = g(P(YBt ), X) for any vector field X, and (CAB)t denote the entries of the
inverse matrix of the matrix whose entries are CABt = g(P(YAt ),P(YBt )).

We assume again that (14) holds, that is, we have

ċ(t+)⊥ − V ⊥
(t,c(t)) = −α(ċ(t−)⊥ − V ⊥

(t,c(t)))

where α is the restitution coefficient of the wall. Then,

d*t (ċ(t
+))− d*t (V(t,c(t))) = −α(d*t (ċ(t−))− d*t (V(t,c(t)))). (19)

In addition, we have the supplementary conditions

νAt (ċ(t
+)− V(t,c(t))) = 0 1 � A � l. (20)

Denote

W(t,c(t)) =
∑

0�A,B�l
(CAB)t

[
g(YAt , V(t,c(t)))

]P(YBt ).
Then,

βAt (W(t,c(t))) = g(YAt , V(t,c(t))) 0 � A � l

or, in other words,

d*t (V(t,c(t))) = β0
t (W(t,c(t))) and νAt (V(t,c(t))) = βAt (W(t,c(t))) 1 � A � l.

Thus, since ċ(t+) ∈ D(c(t)) and ċ(t−) ∈ D(c(t)), we can rewrite equation (19) as

β0
t (ċ(t

+)) = −α β0
t (ċ(t

−)) + (1 + α) β0
t (W(t,c(t))). (21)

Also equation (20) is rewritten as

βAt (ċ(t
+)−W(t,c(t))) = 0 1 � A � l. (22)

Proposition 4.2. Assuming the above conditions, we obtain that

ċW (t
+) = (Pt − αT̃t )ċW (t−) (23)

where

T̃t =
∑

0�A�l
(CA0)t P(YAt )⊗ β0

t

ċW (t
+) = ċ(t+)−W(t,c(t)) and ċW (t−) = ċ(t−)−W(t,c(t)).
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Proof. Proceeding as in the proof of proposition 3.4 we deduce that

ċ(t+) = Pt (ċ(t
−)) +

∑
0�A,B�l

(CAB)tβBt (ċ(t+))P(YAt ).

Thus, using (21) and (22) it follows that

ċ(t+) = Pt (ċ(t
−))− αT̃t (ċ(t−)) + αT̃t (W(t,c(t))) + Qt (W(t,c(t)))

= (Pt − αT̃t )(ċW (t−)) +W(t,c(t))

from which we obtain (23). �

Theorem 4.3 (Extended Carnot’s theorem). Let

T ′
1 = 1

2g(ċ(t
+)−W(t,c(t)), ċ(t+)−W(t,c(t)))

be the kinetic energy of the velocity of ‘separation’

T ′
0 = 1

2g(ċ(t
−)−W(t,c(t)), ċ(t−)−W(t,c(t)))

be the kinetic energy of the velocity of ‘approach’

Tl = 1
2g(ċ(t

+)− ċ(t−), ċ(t+)− ċ(t−))
be the kinetic energy due to the ‘loss of velocity’ and Ct = id − Pt − T̃t . Then

T ′
1 − T ′

0 = −1 − α
1 + α

Tl − 2α

1 + α
T ′

C−
t

− αg(T̃t (ċW (t−)),Ct (ċW (t
−)))

where T ′
C−
t

is the kinetic energy of the velocity Ct (ċW (t
−)).

Moreover, if P(Y 0
t ) ∈ Ft , we have

T ′
1 − T ′

0 = −1 − α
1 + α

Tl − 2α

1 + α
T ′

C−
t
.

Proof. Similar to that of theorems 3.9 and 3.11. �

Example 4.4. We continue example 3.13 with the new assumption that the sphere hits the
moving wall given by x = f (t) (we assume thus that the trajectory of any individual particle
of the wall is perpendicular to the plane x = 0).

The kinetic energy and the permanent constraints are the same as in example 3.13, and
apart from the time-dependent holonomic one-sided constraint * = x − f (t) we have, as in
example 3.13, the instantaneous constraints ψ1 and ψ2 given by (12).

For any fixed time t , we have Qt = Q and T̃t = T̃ , where Q and T̃ are as in example 3.13.
The velocity of the wall is

V(t,c(t)) = (ḟ (t), 0, 0, 0, 0, 0)
and

W(t,c(t)) = (ḟ (t), 0, 0, 0, ḟ (t)/r, 0).
Note thatW(t,c(t)) ∈ Ft , for all t .

Consider now a pre-impact velocity which verifies the permanent non-holonomic
constraints, that is,

(ẋ0, ẏ0, 0,−ẏ0/r, ẋ0/r, (ωz)0).
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If we express Pt − αT̃t by means of a 6 × 6-matrix

M =




1 − r2+αr2

k2+r2 0 0 0 − k2r(1+α)
k2+r2 0

0 1 − k2r2

(k2+r2)(2k2+r2)
0 k4r

(k2+r2)(2k2+r2)
0 k2r

2k2+r2

0 0 1 0 0 0

0 k2r
(k2+r2)(2k2+r2)

0 1 − k4

(k2+r2)(2k2+r2)
0 − k2

2k2+r2

− r(α+1)
k2+r2 0 0 0 1 − k2(α+1)

k2+r2 0

0 r
2k2+r2 0 − k2

2k2+r2 0 1 − k2+r2

2k2+r2




then the relationship between the velocity of ‘separation’ and the velocity of ‘approach’ is
given by(
ẋ1 − ḟ (t), ẏ1, ż1, (ωx)1, (ωy)1 − ḟ (t)/r, (ωz)1

)
=
(
ẋ0 − ḟ (t), ẏ0, 0,− ẏ0

r
,
ẋ0 − ḟ (t)

r
, (ωz)0

)
M.

As in example 3.13, for initial velocities satisfying ẏ0 = r(ωz)0, we have that the relation
between the kinetic energies of the ‘separation’ and ‘approach’ velocities are

T ′
1 − T ′

0 = −1 − α
1 + α

Tl

and, if ẏ0 
= r(ωz)0, then

T ′
1 − T ′

0 = − (1 − α)
1 + α

Tl − 2α

α + 1
T ′

C−
t

where

T ′
C−
t

= k2(k2 + r2)

2r2(2k2 + r2)
(ẏ0 − r(ωz)0)2.
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